lunes, 28 de julio de 2008

2. Sensores autorresonantes: resonadores de cuarzo, caudalímetro de vórtice. 2.1.Construcción de sensores autorresonantes

Sensores Autorresonantes.

El principio de funcionamiento de los sensores autorresonantes se basa en un fenómeno físico resonante ofrecen una frecuencia de salida que depende de una magnitud de interés que afecta a la frecuencia de oscilación. Todos requieren un frecuencimetro—contador para medir bien la frecuencia o bien el periodo de oscilación- La elección de uno u otro método depende de la resolución deseada y del tiempo disponible para la medida. Las estructuras resonantes basadas en monocristales de silicio se prestan bien a la realización de circuitos integrados. En sensores se emplean tanto osciladores armónicos como de relajación. En los primeros hay una energía almacenada que cambia de una u otra forma de almacenamiento, por ejemplo de energía cinética en el movimiento de una masa a energía potencial en la tensión de un muelle. En los segundos hay una única forma de almacenamiento, y la energía almacenada se disipa periódicamente mediante algún mecanismo de puesta a cero.




Es importante observar que si bien la ausencia de convertidor A/D hace innecesaria una tensión de referencia estable para medir la salida de estos sensores, no por ello es posible medir una magnitud absoluta -la frecuencia del oscilador- sin tener otra magnitud de referencia bien conocida, en este caso el oscilador del que se obtiene la base de tiempos del contador con que se mida la frecuencia. Este oscilador de referencia será generalmente de cristal de cuarzo y tendrá derivas con el tiempo y la temperatura. Las derivas temporales se deben a cambios estructurales en el cuarzo debidos a imperfecciones en la estructura cristalina, a las tensiones mecánicas ejercidas por los soportes sobre el cuarzo, que decrecen con el tiempo, y que varían después de ciclos térmicos: y a los cambios de masa del cristal por absorción de contaminantes dentro del encapsulado.
Tipos de Sensores Autorresonantes
Sensores Resonadores de Cuarzo
Estos sensores están basados en una frecuencia de oscilación alta, se basan en la variación que sufre ésta ante una deformación del cristal, para un elemento con electrodos metálicos depositados en dos de sus caras, en la figura 4 se muestra el circuito eléctrico equivalente de un sensor de cuarzo resonante. En ésta, Lm viene determinada por la masa del cristal, Cm por la elasticidad mecánica, Rm por la fricción interna (que se traduce en una disipación de calor) y Co es la capacidad del soporte del cristal en paralelo con la de los electrodos metálicos, con el material piezoeléctrico como dieléctrico. La presencia de un circuito resonante permite emplear dicho elemento como base de un oscilador.







Dado que el cuarzo es inerte, si se emplea un monocristal de gran pureza la estabilidad de la resonancia mecánica a largo plazo es muy alta. La estabilidad a corto plazo depende del factor de calidad Q (alta rigidez, poca histéresis) y la inductancia equivalente, que son muy elevados. Una estabilidad a corto piazo elevada permite diseñar sensores de alta resolución, mientras que una gran estabilidad a largo plazo significa que se necesitarán menos recalibraciones. Existen diversos tipos de sensores resonantes clasificándose según la variable física a medir.
Termómetros Digitales de Cuarzo
Microbalanzas de cuarzo
Sensores de gas resonante
Sensores de fuerza y presión basados en resonadores de cuarzo
Caudalimetro de Vórtice
El principio del caudalimetro de vértice esta basado en la medición de la frecuencia de generación de vórtices por un obstáculo insertado en el flujo, cuya frecuencia es proporcional a la velocidad media, en un campo dado de número de Reynolds.Aunque existan muchos dispositivos de este tipo, experiencia con este metodo de medida de caudal es limitada y este método solamente se puede utilizar con precaución. Por ejemplo, cualquier vibración de la conducción es capaz de alterar la frecuencia medida y por lo tanto debe ser evitada.

No hay comentarios: